Uniform Poincaré and logarithmic Sobolev inequalities for mean field particle systems

نویسندگان

چکیده

In this paper we consider a mean field particle systems whose confinement potentials have many local minima. We establish some explicit and sharp estimates of the spectral gap logarithmic Sobolev constants uniform in number particles. The Poincaré inequality is based on work Ledoux (In Séminaire de Probabilités, XXXV (2001) 167–194, Springer) Zegarlinski’s theorem for Gibbs measures, both combined with an estimate Lipschitz norm Poisson operator single from (J. Funct. Anal. 257 (2009) 4015–4033). then implies exponential convergence entropy McKean–Vlasov equation rate, need here weaker conditions than results (Rev. Mat. Iberoam. 19 (2003) 971–1018) (by means displacement convexity approach), (Stochastic Process. Appl. 95 109–132; Ann. Probab. 13 540–560) Bakry–Emery’s technique) or recent (Arch. Ration. Mech. 208 (2013) 429–445) dissipation Wasserstein distance).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic Sobolev and Poincaré inequalities for the circular Cauchy distribution ∗

In this paper, we consider the circular Cauchy distribution μx on the unit circle S with index 0 ≤ |x| < 1 and we study the spectral gap and the optimal logarithmic Sobolev constant for μx, denoted respectively by λ1(μx) and CLS(μx). We prove that 1 1+|x| ≤ λ1(μx) ≤ 1 while CLS(μx) behaves like log(1 + 1 1−|x| ) as |x| → 1.

متن کامل

From Poincaré to Logarithmic Sobolev Inequalities: A Gradient Flow Approach

We use the distances introduced in a previous joint paper to exhibit the gradient flow structure of some drift-diffusion equations for a wide class of entropy functionals. Functional inequalities obtained by the comparison of the entropy with the entropy production functional reflect the contraction properties of the flow. Our approach provides a unified framework for the study of the Kolmogoro...

متن کامل

SOBOLEV - POINCARÉ INEQUALITIES FOR p < 1

If Ω is a John domain (or certain more general domains), and |∇u| satisfies a certain mild condition, we show that u ∈ W 1,1 loc (Ω) satisfies a Sobolev-Poincaré inequality`R Ω |u − a| q ´ 1/q ≤ C `R Ω |∇u| p ´ 1/p for all 0 < p < 1, and appropriate q > 0. Our conclusion is new even when Ω is a ball.

متن کامل

Uniform logarithmic Sobolev inequalities for conservative spin systems with super-quadratic single-site potential

We consider a non-interacting unbounded spin system with conservation of the mean spin. We derive a uniform logarithmic Sobolev inequality (LSI) provided the single-site potential is a bounded perturbation of a strictly convex function. The scaling of the LSI constant is optimal in the system size. The argument adapts the two-scale approach of Grunewald, Otto, West-dickenberg, and Villani from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Applied Probability

سال: 2022

ISSN: ['1050-5164', '2168-8737']

DOI: https://doi.org/10.1214/21-aap1707